
Int. J. Multiphase Flow Vol. 16, No. 6, pp. 1071-1096, 1990 0301-9322/90 $3.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1990 Pergamon Press/Elsevier 

A F I N I T E  D I F F E R E N C E  C O M P U T A T I O N A L  M O D E L  O F  

A N N U L A R  F I L M - F L O W  B O I L I N G  A N D  T W O - P H A S E  

F L O W  I N  V E R T I C A L  C H A N N E L S  W I T H  O F F S E T  

S T R I P  F I N S  

G. D. MANDRUSIAKt and V. P. CAREY 
Mechanical Engineering Department, University of California, Berkeley, CA 94720, U.S.A. 

(Received 25 May 1989; in revised form 30 April 1990) 

Abstract--This paper describes a detailed computational model of annular two-phase flow through offset 
strip fin heat exchanger geometries. In this model, a modified finite difference scheme is used to compute 
the velocity and pressure fields throughout the vapor core of the fin matrix. The vapor phase model is 
iteratively matched to a second finite difference model of the liquid film flowing along the channel walls. 
Three-dimensional interactions between the liquid film flowing along the prime and secondary surfaces 
of the matrix are also incorporated into the model. By solving the Navier-Stokes equation in the vapor 
phase, this model provides, for the first time, detailed local information about the shear stress and static 
pressure variation along the liquid film. This makes it possible to study the local variation of the heat 
transfer coefficient and wall shear stress all along the matrix. The model is validated against experimental 
data for two different offset fin geometries and then used to systematically study the effects of fin and 
channel geometry on two-phase transport. Special properties of two-phase flow through offset fin matrices 
discovered using the model are also described and the effects of these properties on the accuracy of 
previous annular flow models is discussed. 
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I. I N T R O D U C T I O N  

Offset strip fin heat exchanger geometries of the type shown in figure 1 have been used in numerous 
single-phase heat transfer installations for many years. The excellent heat transfer properties 
of these heat exchangers have recently made them attractive for use in phase change heat 
transfer applications as well. Their high thermal efficiency makes them well-suited for numerous 
chemical processing and separation applications. In addition, their small size and weight make 
them ideal for use as evaporators and condensers in aircraft air-conditioning and refrigeration 
systems. If the advantages provided by the offset fin arrangement are to be fully realized in 
these applications, the two-phase operating characteristics of offset fin geometries must be 
well-understood. 

Interest in applications of the type noted above has made the modeling of two-phase transport 
in offset fin geometries an important topic in multiphase flow research in recent years. Experimental 
studies of two-phase flow in offset fin matrices have shown that, in many applications, annular 
flow is the dominant flow regime over most of the channel (e.g. Carey & Mandrusiak 1986). As 
a result, most analytical models of two-phase flow have been developed for the annular flow 
regime. Film-flow models by Yung et al. (1980), Robertson (1982, 1984) and Carey & Mandrusiak 
(1986), for example, provide reasonable estimates of two-phase heat transfer coefficients over a 
wide range of flow conditions. For conditions in which nucleate boiling is a factor (for 
either annular or non-annular flow), models by Panitsidis et al. (1975), Chen et al. (1981) and 
Mandrusiak & Carey (1989) can be used to predict surface heat transfer performance. Information 
about the two-phase pressure drop characteristics of offset fin geometries can be obtained from 
adiabatic flow models of the type proposed by Carey & Bennett (1985) or Mandrusiak & Carey 
(1988). 

i'Current address: General Motors Corp., Troy, MI, U.S.A. 
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While existing models of annular flow in offset fin matrices are useful predictive tools, each 
includes idealizations which may limit the range of conditions and geometries over which they will 
be most accurate. Idealizations usually present in these models include: 

(1) The shear stress along the interface of the liquid film flowing along the matrix 
walls is assumed constant all along the channel. 

(2) With the exception of the film-flow model by Robertson (1984), droplet 
entrainment effects usually not included in the analysis. 

(3) The static pressure gradient, when included in the liquid film analysis, is usually 
assumed favorable all along the channel. 

(4) Transport in the liquid film is usually assumed similar to that for annular flow 
in continuous rectangular channels. The local changes in the liquid and vapor 
flow fields caused by the fins are usually not accounted for in the models. 

Besides using many of these idealizations in their foundation, previous models have not provided 
a systematic way for quantifying the effects of channel geometry and fin arrangement on two-phase 
performance. In addition, existing models have supplied few details about how the liquid and vapor 
phases are distributed within the channel or how they interact with each other and the fins. 

In the present study, annular two-phase flow in offset strip fin geometries is modeled from a more 
fundamental perspective. In contrast to previous efforts, the fluid mechanics of the vapor flowing 
through the cores of the matrix is analyzed in great detail. The vapor velocity and pressure fields 
are determined throughout the vapor core by numerically solving the governing equations for 
laminar or turbulent flow (as appropriate) within the fin matrix. These calculations provide, for 
the first time, an indication of the true variation of shear stress and static pressure along the 
interface of the liquid film flowing along the channel walls. This will permit a level of sophistication 
in modeling of transport in the liquid film which is significantly beyond that presented in earlier 
models. 

In addition to the more detailed treatment of transport in each phase, the model of the liquid 
film developed here accounts for three-dimensional effects associated with the prime surface of the 
fin matrix. The special droplet entrainment characteristics which arise because of the interrupted 
nature of the channel walls are also included in the model. 

After the details of the analytical treatment of each phase have been presented, the model is 
validated by comparing its predictions with experimental data available in the literature. The model 
is then used to theoretically quantify, for the first time, the effects of fin and channel geometry on 
two-phase transport in offset fin matrices. Some of the special properties of flow in offset fin 
geometries predicted by the computer model are also presented and their potential effect on the 
accuracy of previous models is described. 

1.1. Overview of the model 

In the model of annular flow to be presented in this paper, models of transport in the core- and 
film-flow regions are derived separately from the fundamental equations of fluid mechanics. These 
models are then joined together by imposing continuity requirements on velocity and shear stress 
all along the gas-liquid interface. 

The vapor phase is modeled as a fully turbulent, periodically fully developed flow through a 
two-dimensional idealization of an offset fin array. The influence of entrained liquid on the vapor 
flow field was included by computing the effective fluid properties using homogeneous flow theory. 
The vapor model includes the effects of the irregular shape of the gas-liquid interface on the vapor 
flow domain and adjusts the boundary conditions to reflect the non-zero velocity of the interface 
of the liquid film. 

The liquid film was treated using a weakly three-dimensional model formed by joining (along 
the corners of the channel) separate models of the film flowing along the prime and secondary 
surfaces of the matrix. This film model attempts to include the effects of the continual redistribution 
of the liquid phase along and around the walls of the fin matrix. The model includes the influence 
of both droplet deposition and entrainment and circumferential spreading of the liquid film 
by turbulent interfacial shear stresses on the rate of liquid redistribution around the matrix 
walls. 
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Since the streamwise variations in both the velocity and location of the gas-liquid interface 
depend on conditions in both phases, the exact computational boundaries cannot be specified 
a priori. Consequently, calculations in each phase proceed iteratively, with the output from 
one phase model serving as input to the other. Iterations continued until the location of the 
gas-liquid interface no longer changes and the velocity and shear stress vary continuously across 
the interface. 

The equations governing the velocity and temperature fields in each phase and the techniques 
used to solve them will be presented in the following sections of this paper. For a more complete 
description of the two-phase flow model being developed here, the reader is referred to the thesis 
by Mandrusiak (1988). 

2. NUMERICAL MODEL OF THE VAPOR PHASE 

The analysis of the vapor phase traveling through the core of the fin matrix was simplified by 
introducing the following idealizations: 

(1) The flow is periodically fully developed with a period of two fin lengths, i.e. 
profiles of all quantities across cross stream planes two fin lengths apart are 
identical. 

(2) The core fluid is a mixture of pure vapor and discrete droplets entrtained from 
the liquid film flowing along the channel perimeter. The mean density, Pc, and 
viscosity, #c, of the two-phase mixture was determined using well-known 
homogeneous two-phase flow theory (Wallis 1969). 

(3) The vapor core is isothermal at the saturation temperature of the test fluid. This 
eliminates the energy equation from the analysis of the vapor phase. 

The irregular shape of the flow path formed by the fins of the matrix (figure 1) makes the vapor 
flow field very complex. As a result, the equations governing the velocity field are elliptic in nature 
and difficult to solve in their full, three-dimensional form. Because the model being developed here 
involves repeated calculation of the vapor velocity field, core-flow computations were performed 
using the two-dimensional idealization of the fin matrix of figure 1 shown in figure 2(a). This 
assumes that the prime surface has relatively little effect on the flow field in the vapor phase. While 
this is likely most accurate for channels having higher aspect ratios, it may also be reasonable for 
flow conditions in which fin effects strongly control the flow field in the matrix. 

,..>-... 

SECONDARY (FIN) SURFACE 

Figure 1. Diagram of a typical offset fin matrix. 
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Figure 2. (a) Two-dimensional idealization of  the offset fin surface. (b) Detailed diagram of the 
computat ional  domain.  

Assumption (1) allows the core-flow calculations to be performed over the representative unit 
cell ABCDEFA shown in figure 2(b). The equations governing the velocity field within this 
two-dimensional domain for either laminar or turbulent flow are: 

aU~, 
= 0  [l] 

~3x,. 

and 

pcvc avcj o~,~ ~ F (ovo, +~v.~q 

where the subscript c denotes core-flow quantities. For laminar flow conditions, YE represents the 
effective molecular viscosity, #~, of  the core fluid. For conditions in which the core flow is turbulent, 
#E represents the combined effects of  molecular and turbulent viscosities: 

k 2 
#E = Pc + C , ,p  - - .  [3] 

( 

The turbulent kinetic energy, k, and dissipation function, c, in [3] are determined using the k-~ 
turbulence model: 

pc Uc, &y% = ax, LO'k \ & W J  + #T ~ + ~ - - .  -- Pc' [4] \ 8Xj 
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and 

OcUo,~-~x =OX, L., ~ +C,~.T-~xj k Ox / + Ox,.I-C2p.-~. [51 

By using the standard k ~  model in these calculations, the turbulence in the core flow is being 
approximated as fully developed and isotropic. The conventional values of the coefficients 
appearing in [3]-[5] are summarized in table 1. 

Table 1. Constants in the k~ turbulence 
model 

C. Ci C2 a~ a, 
0.09 1.44 1.92 1.0 1.3 

It is worth noting that, for the conditions examined here, the turbulent contribution to the 
effective viscosity, #E in [9] overwhelmed the contribution of molecular effects, #~, by as much as 
2 orders of magnitude. The small size of the recirculation zones in the flow (see figure 9), the fine 
grid used along the impermeable boundaries and the (approximate) alignment of the flow with the 
grid lines reduced the effect of numerical viscosity on the calculations as well. For the conditions 
considered here, it is estimated that numerical viscosity was < 10% of the turbulent viscosity, 
particularly in the region of interest along the gas-liquid interface. 

The boundary conditions for [1]-[5] reflect the periodically fully developed nature of the vapor 
flow field. Here we take x to be the downstream coordinate, y is the coordinate normal to the fins 
and z is normal to the prime surface, with corresponding velocities U, V and I4,', respectively. Planes 
BC and FE in figure 2(b) are planes of symmetry, so that: 

OUcdy yBc,yrr = O; V¢I,'BC.yFE = 0 [6a] 

and 

tgk YBC.YFE =0; ~yO(" YBC,YFE = 0  

In addition, profiles of U, V, k and E and their associated 
must match those across the inlet plane AF: 

U¢i(Xco, y) = Uci(XAF, Y); 

[6b] 

streamwise derivatives across plane CD 

OUc, ~cD = 0U~'I [7a] 
0x . xA~' 

Ok xcD Ok xAr ~x = ~x [7b] 

and 

k(xcD, y) = k(XAF, y); 

£ (XcD, Y) = C(XAF, Y); 
0~ XCD 0~ XAF" 
~x = ~x [7c] 

The boundary conditions along the liquid film in figure 2(b) were chosen to ensure continuity 
of both velocity and stress across the gas-liquid interface: 

0Uc ;,= ~<x) = *iF(X) [8] 

and 

U¢[,.=av¢x) = UIF(X); Vcly=aFcx)= VIF(X) ~ 0  [9] 

The calculation of U,F(X) and 6F(X) will be described in section 3. 
The k-e turbulence model given by [4] and [5] requires special treatment near impermeable 

boundaries. In its present form, the model is only valid in the fully turbulent region of the flow. 
To ensure the proper behavior of k and e along the liquid film, the treatment proposed by Launder 
& Spalding (1974) was incorporated into the calculations. With this treatment, the generation terms 
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in the integrated form of [4] and [5] are modified near walls to reflect the turbulence "damping" 
which occurs in this region. In addition, the turbulent dissipation function, c, is assigned a value 
determined by assuming that equilibrium turbulence (i.e. production = dissipation) exists near the 
boundaries: 

3 4 3/2 C~, kq 
cq - [10] 

~Yq 

Finally, gradients of k normal to the walls are set to zero all along the impermeable boundaries 
to complete the boundary conditions on k and 6. (This last boundary condition ensures the proper 
behavior of the turbulent kinetic energy distribution as the edge of the fully turbulent region is 
reached.) 

Equations [1]-[5] were solved using the SIMPLER algorithm [described in Patankar (1980)] in 
the TEACH-2E computer program described by Gosman & Iderian (1976). In this program, finite 
difference equations for each quantity (U, V, k etc.) are obtained by integrating the appropriate 
governing equation over control volumes centered around appropriately chosen grid locations in 
the flow. The resulting set of coupled, non-linear equations are then solved iteratively (using the 
SIMPLER algorithm) until all of the governing equations, [1]-[5], are satisfied to within a specified 
tolerance. 

The encroachment of the liquid film on the vapor flow domain was included through a special 
grid-line treatment near the fin walls [figure 3(a)]. [The film thickness and grid spacing in figures 
3(a, b) have been greatly exaggerated in comparison to the fin thickness for clarity.] If the liquid 
film occupied more than half a cell in the "true" configuration, the cell was incorporated into the 
boundary for the calculations (cell 1, for example). If less than half a cell was occupied by liquid, 
then the cell was included in the flow domain for the vapor core (cell 2, for example). In this way, 
the liquid film boundary shown in figure 3(a) was converted to the less exact, but more 
computationally feasible, shape shown in figure 3(b). During the calculations, the front (stagnation) 
and rear faces of each "step" in the film shape [figure 3(b)] were treated in the same way as the 
corresponding faces on the fins forming the matrix. Calculation of the interfacial shear stress along 
the streamwise face of each "step" proceeded as for a continuous, impermeable wall having a 
non-zero, streamwise velocity. Although this treatment introduces "artificial leading edges" along 
the gas-liquid interface, the film was too thin relative to the cross stream fin spacing to significantly 
affect the vapor core velocity and pressure fields. In addition, the variation in shear stress along 
the "stepped" interface of figure 3(b) did not differ markedly from that along a smooth fin wall. 

The two-phase flow calculations required computing the vapor phase flow field many times for 
each set of conditions tested. Consequently, the grid used for the calculations had to be chosen 
to provide accurate shear stress and pressure field information in a reasonable amount of CPU 
time. Test calculations were performed with various grid densities [ranging from 23(x) x 17(y) to 
39(x) x 33(y)] before deciding upon a final grid of 33(x) x 29(y) nodes. This algebraically-gener- 
ated, non-uniform, rectangular grid yielded shear stress and pressure field information within + 3% 
of values computed using finer grids without consuming exhorbitant amounts of CPU time. 

"TRUE" INTERFACE 

CELL I ~  ~ C E L L  2 

- L . . - -  ~ . - " t r - " ~ - - - . . - - . ~  . . / ,  
f ~'w, ,Wl,,,, 

- . ¢ " 1  I , , , , , , l /  / I - " r  

"NUMERICAL" INTERFACE 

( a )  (b) 

Figure 3. Treatment of an irregularly shaped liquid interface using a rectangular grid arrangement: (a) 
"true" film thickness variation; (b) approximation used for the calculations, The grid size and film 

thickness have been exaggerated in comparison to the fin thickness for clarity. 
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3. LIQUID FILM-FLOW MODEL 

The fluid mechanics of annular flow in offset fin matrices is more complicated than flow in round 
tubes because of the discontinuous nature of the channel walls. The interruptions in the channel 
walls not only affect the distribution of the liquid film around the channel perimeter, but they also 
influence the droplet entertainment characteristics of the channel. In addition, the continual 
redistribution of the liquid film by the fins makes the governing transport equations more 
complicated than has been assumed in previous models. 

In the discussion that follows, the distribution of the liquid phase within the matrix will be 
described in both qualitative and quantitative terms. The equations governing both momentum and 
energy transport in the liquid film will then be developed. 

3.1. Liquid phase distribution 

Although most previous models of annular flow have recognized the special nature of the walls 
of the fin matrix, treatment of the effects of the interruptions on flow and transport in the channel 
has varied widely. Yung et al. (1980) postulated that the liquid film was shed from the trailing edge 
of each fin as a continuous sheet. At the next downstream row of fins, this sheet was split by the 
leading edge of each fin and spread onto the fin walls to form a film of uniform thickness. 
Robertson (1984) suggested that the liquid film was dispersed into the vapor core as discrete 
droplets at the end of each fin. These droplets were then redeposited at a controlled rate along the 
walls of the next row of fins to form a film with a thickness that increased in the streamwise 
direction. More recently, Carey & Mandrusiak (1986) proposed that, for very short fins, surface 
tension pulled the liquid film to the prime surface at the downstream end of each fin. At the leading 
edge of the next row of fins, circumferential shear forces returned the liquid to the fin to create 
a film of uniform thickness. 

In the present study, the treatment of wall discontinuity and its effects on the liquid film includes 
elements of each of the models described above. At the trailing edge of the fin, some of the film 
is assumed drawn to the prime surface by surface tension and the remainder is shed into the vapor 
core as discrete droplets [figure 4(a)]. Along the next downstream row of fins, liquid drawn to the 
prime surface from the previous row of fins is gradually swept onto the fin walls by interfacial shear 
forces. Additional liquid is transferred to the fin walls through droplet deposition from the vapor 
core [figure 4(b)]. The steps in this film transfer model will be cast in quantitative terms in the next 
section. 

Figure 4a 
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H 
2 
4, 

Figure 4b 

Figure 4. Mechanism for exchanging the liquid film between successive rows of fins: (a) behavior at the 
trailing edge; (b) behavior at the leading edge. 

3.2. Liquid film spreading 
The mechanisms which spread the liquid film around the walls of the fin matrix are probably 

similar to those which sustain annular two-phase flow in horizontal tubes (against the tendency 
of gravity to stratify the two phases). The mechanisms active during annular flow in horizontal 
round tubes were described and evaluated in a review paper by Butterworth (1972). Of the basic 
mechanisms examined in that study, only one--lateral film spreading by circumferential shear 
stresses--is expected to be active in the flow situation being considered here. This mechanism is 
consistent with that proposed by Carey & Mandrusiak (1986) and was found by Butterworth (1972) 
to be one of the dominant mechanisms active in round tube flows as well. 

To quantify the rate at which the liquid film is spread around the channel walls, basic elements 
of a model of annular flow in an eccentric annulus proposed by Butterworth (1968) were adapted 
to the present flow situation. Consider "unfolding" the liquid film flowing along the walls of the 
fin matrix to form the two-dimensional domain shown in figure 5. If a mass balance is performed 
on a segment of the liquid film, the following equation is obtained: 

3Fx 8~ 
8x + ' = 0 .  [11] 

The quantities F, and F: represent mass flow rates per unit width in the streamwise and 
circumferential directions, respectively. By analogy with other transport processes, Butterworth 
(1968) suggested that F. was related to its streamwise counterpart, F,, by 

F. = -fl" OF,. [121 
- ~ Z  " 

The quantity f12 represents a film spreading coefficient and has the dimensions of length. For round 
tubes, Butterworth (1968, 1972) found that fl' did not vary strongly with either flow conditions or 
tube size, and ranged in value from 3 to 20 mm. In the present study, the optimal value of f12 also 
appeared to be independent of flow conditions, but seemed to vary somewhat with channel 
geometry. As will be seen, good agreement between model predictions and available data was 
obtained when flz was approximated by 

fl~ = " ( s  + H).  

For the geometries considered in the present study, f12 was about 3 ram. 
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Figure 5. Computational domain used for determining the rate of film spreading in the matrix: (a) location 
of the film in the fin matrix; (b) "unfolded" film used for the computations. 

By combining [11] and [12], F: can be eliminated from the continuity equation, leaving 

OFx = 18 2 c~2Fx [13] 
c~x dz ~ " 

When [13] is solved subject to the appropriate boundary conditions, the following expression is 
obtained: 

MFILM ~; [ /' 2nufl "~= -] f 2nuz "~ 
rx(x, =) = s <.exp L - xjc°st )' [14] 

with 

2MFILM . / nnS 
c._- ..---r s'ntrv- ) 

This equation represents the local variation in the axial mass flow rate per unit length of 
channel perimeter throughout the flow domain shown in figure 5(b). The streamwise variation in 
the film flow rate along the prime and secondary surfaces of the channel, MpCPRIME)(X ) and 
MFIN~PR,ME~(X), respectively, can be found by integrating [14] across the appropriate segment of the 
channel perimeter. The complete derivation of [14] and closed-form expressions for Mp~PR~ME) and 
MF,N¢PRIME) are presented in the appendix. 

3.3. Droplet deposition and entrainment 
The contribution of droplet depositon to the film flow rate is quantified using a modified form 

of the deposition model proposel by Robertson (1984). Robertson related the cumulative amount 
of liquid deposited along the fin wall liquid film, MDROP@~N)(X), to the flow rate of fluid (both liquid 
and vapor), QT, in the core of the fin matrix through the relation: 

MDROVCF,N)(X)=MDRoV(CORE).O[I_exp( KoH ' 7  x ) /  tlSl 

The quantity MDROVtCORE).O represents the droplet flow rate prior to the initiation of deposition, H 
is the fin height and Ko is a mass transfer coefficient. In computing MDROPtCOREXO, Robertson (1984) 
assumed that the entire liquid film flowing along the fin wall was dispersed as droplets into the 
vapor core at the trailing edge of each fin. In the present study, however, some of the fin wall film 
is assumed to be drawn to the prime surface by surface tension. As a result, the value of 
MDROP(CORE).O used here is slightly different from that used by Robertson. More specifically, 

IJMF 16/6--I 
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MDROP(CORE).O reflects the influence of surface tension on the film fluid mechanics at the trailing edge 
of the fins in the matrix. 

In a recent study of droplet shedding phenomena in offset fin geometries, Mandrusiak & Carey 
(1990) postulated that only liquid which flowed in a central "entrainment region" could potentially 
be shed into the vapor core as droplets (figure 6). They argued that, for entrainment to occur, the 
distance over which surface tension forces influenced film behavior, Lc, could not exceed half the 
fin height (i.e. Lc < H/2). This condition was expressed mathematically in terms of a threshold value 
of a Weber number, We*, parameter, where Well = G2xEH/pGcr (G being the total mass flux): 

Lc We* 
- - -  - -  < 1 for entrainment to occur. [16a] 
H Well 
2 

They also postulated that, for some conditions, the liquid film may be too thin to allow entrainment 
from the fins to continue. This condition was also characterized by a critical value of the Weber 
number We*, this time based on the film thickness, fi(i.e. We~ = G2x26/p~a): 

We6 > We* for entrainment to occur. [16b] 

Experimental data obtained by these investigators appeared to support their assertion that 
entrainment only occurred over a certain range of  flow conditions and was negligible outside of 
this range. 

The model proposed by Mandrusiak & Carey (1990) considers conditions at the point of  incipient 
entrainment of  droplets from the fins. It may also, however, provide a means of predicting the 
droplet flow rate once entrainment begins. Let MF~N~E~D~ denote the flowrate of  liquid on the fin 
walls at the trailing edge of  the fin and let MSr~ED be the amount  of this film which is shed as 
droplets. If  the film is uniformly distributed across the fin height, then the fraction shed is, to a 
first approximation (figure 6): 

MSHED = H - 2Lc [17] 

MFIN(END) H 

"'- I_ ~ "~. C i 

Zo, e~,e, r 

Figure 6. Identification of the "entrainment region" at the trailing edge of a fin. Droplet entrainment is 
assumed to occur from this section of a fin only (Mandrusiak & Carey 1990). 
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The entrainment model proposed by Mandrusiak & Carey (1990) suggests that Lc/H depends on 
Well. For the computational model being developed here, reasonable predictions of two-phase 
performance characteristics were obtained when L¢/H was computed using the following empirical 
relation: 

2Lc=( 12 '~0.2 

\ W e . }  " 

Combining this with [17] yields the following expression for the droplet shedding fraction: 

_(  :30: 
MSHED = 1 [18] 

MFIN(END) \ W e . ]  ' 

During periodically fully developed annular flow, the amount of liquid shed from the end of each 
fin must equal the amount deposited along its lateral surface. Consequently, MSHED and MDROP(FIN) 
are related through [15]: 

MSHED = MDROP(CORE).O [ 1 -  exp( K~_~L)]. [19] 

MFIN(END) in [17] must equal the sum of the amounts of liquid transferred to the fin through film 
spreading, MFm(PRIME)(L) (see [A.7]), and through droplet deposition from the core, MDROP(FIN)(L) 
(see [15]): 

MFIN(END) = MFIN(PRIME) (L) + MDROP(FIN ) (L). [20] 

are combined and rearranged, the following expression is obtained for When [17]-[20] 
MDROP(CORE),O : 

MDROP(CORE)O= 1 + QT ]_JJ [21] 

In this equation, 0 = MF~N(PRIME)(L)/MFILM and is calculated using [A.7] (see the appendix) with 
x=L. 

4. MOMENTUM AND ENERGY TRANSPORT IN THE LIQUID FILM 

The treatment of momentum and energy transport in the liquid film in most previous models 
of annular flow in offset fin geometries has, in many respects, been the same. The convective terms 
are usually dropped from the governing equations and the velocity and temperature profiles are 
assumed to depend only on the cross-film coordinate. The liquid exchange process described in 
section 3 suggests that the film behavior is more complex than has been assumed previously. An 
order of magnitude analysis indicates that the acceleration terms in the film Navier-Stokes equation 
are of the same order as the cross-film shear terms. As a result, the convective terms must be 
retained in the governing equations for both the velocity and temperature fields in the film. Droplet 
deposition also complicates the analysis by making the boundary conditions along the gas-liquid 
interface more complex than has been assumed previously. 

The equations governing the velocity and temperature fields in the liquid film flowing along the 
channel perimeter were developed using the following idealizations: 

(1) For the conditions being considered here, the liquid film Reynolds number rarely 
exceeds 500. Consequently, momentum transport is assumed to be an essentially 
laminar process along the entire length of the fin matrix. 

(2) Lateral variations in the film velocity field are small in comparison to variations 
in the streamwise direction or across the film thickness. 

(3) The effect of surface tension on the pressure variation in the liquid film is 
negligible. 

(4) The thickness of the liquid film is small in comparison to its length and breadth. 
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(5) The streamwise variation in film thickness is determined solely by the momentum 
and continuity equations. This assumes that the evaporation rate along a given 
fin is sufficiently low that it has only a secondary influence on the film thickness 
variation along the channel wall. 

Since the static pressure and interfacial shear stress acting along the prime and secondary surface 
films are different, momentum transport in each film will be considered separately. Flow in the 
corners of the fin matrix (where the prime and secondary surfaces meet) is assumed to have no 
effect on the fluid mechanics of either film. This regions is idealized as a "bridge" across which 
mass and momentum are exchanged without resistance (figure 7). 

Consistent with the above discussion, the equations governing the velocity field in the liquid film 
flowing along the prime and secondary surfaces of the fin matrix take the following form: 

~U ~v  
+ 7y = Sc(x), 

and 

pu,~Um ,~U ,~P a2U 
Jr p W -~y -- ~ x P g dr ]A ~ 2 "[- am ( X ) , ?x 

dP 
ay 

[22] 

[23] 

[24] 

0P 
0 = -  aS [25] 

The functions So(x) and Sin(x) represent mass and momentum sources which arise through the 
exchange of liquid between the prime and secondary surfaces (see table 2). The quantity mpF(X) 
is the local mass exchange rate between the prime and secondary surface films (figure 7) and is 
computed by differentiating [A.7] with respect to x. 

The vertical momentum equation [24], and assumption (3) above indicate that the pressure 
variation in this film is the same as that in the vapor phase adjacent to the gas-liquid interface. 
For the film flowing along the fin walls, the pressure along the interface, Pr, is provided directly 
by the two-dimensional numerical model of the vapor core (section 2). Since the vapor core 
model does not include prime surface effects, the pressure variation along the prime surface 
film, Pp, cannot be determined directly from the computed vapor flow field. It seems reasonable 

~ j J  I NO SHEAR, q"=O F IN~ 

z .k  . 1 7 . .  \ PF(x)j j ~  

PRIME S U R F A C ~  

Figure 7. Characteristics of the corner regions of the fin matrix used for the liquid film calculations. 
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Table 2. Source functions for the continuity and 
momentum equations 

Film S~(x) Sin(x) 

Prime 2mpF (x) 0 
pL S~p(X ) 

2mpr(X) 2mpv(x) 
Secondary PL H~F(X) pL H~r(X) (~P -- ~'F) 

to expect, however, that flow near the prime surface will experience accelerations and decelerations 
similar to those of the bulk fluid near the fin midheight. Therefore, the static pressure in the 
prime surface film was approximated by the integrated mean pressure across the unit cell in 
figure 2(b): 

PP = ~ Pc (x, y) dy. 

It is interesting to note that the momentum source function, Sin(x), only appears in the 
momentum equation for the film flowing along the fin walls. For this film, the streamwise velocity 
of liquid entering from the prime surface is different from that of the fin wall film itself, making 
Sm non-zero. For the prime surface film, however, the momentum per unit mass of liquid leaving 
the film is the same as that of the film itself making the net momentum loss due to film spreading 
negligible. 

The boundary conditions which must be satisfied by the momentum equations for the prime and 
secondary surface films are summarized in table 3. The interfacial shear stress variation along the 
fin wall film, ZIF(X), is provided directly by the two-dimensional model of the vapor core (section 
2). The droplet impingement rate per unit length, mpp(x), required to compute the additional 
"stress" along the fin wall caused by droplet deposition is computed by differentiating [15] with 
respect to x. Since the vapor core model does not include prime surface effects, the shear stress 
along the prime surface film, hP, was approximated by values computed using standard correlations 
for round tube flows: 

where 

6 2 
Zip = 2--~Gg~fi' 

f = 0.00511 + 75(1 - ec)] 

and eG is the mean void fraction (Wallis 1969). 
As a first approximation, the thickness of the fin wall film at the leading edge of the fin is assumed 

to be zero. This, when combined with [A.2] in the appendix (zero mass flow rate at the leading 
edge), leads to the inlet boundary condition for the fin wall film shown in table 3. The exact 
boundary condition which best represents conditions along the inlet to the prime surface film is 
difficult to specify accurately. The film fluid mechanics at this location is complicated by the liquid 
exchange processes which occur at the leading and trailing edge of each fin. In addition, the channel 
flow area is a minimum and the prime surface film flow rate is a maximum at this location. In light 
of these observations, the prime surface film was assumed to attain its maximum velocity at x = 0, 
leading to the boundary condition, OUp/OX = 0, shown in table 3. 

Table 3. Boundary conditions for the liquid film momentum equations 

Location Prime surface Secondary surface 

y =o up=o, vp=o uF=o, vr=o 
8Up ~UF 

)' =t~(X) #L~-y ='t'lp(X) #L ~ffy =Z,F(X)+ mDF(X)[Ux --UIF(X)] 

OUp 
x =0 --- =0 U~=O 

~x 
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The local film thickness, 6(x), shown in table 3, was determined using the appropriate local film 
flow rate Mvm (see the appendix and section 3.1), and the computed film velocity field for each film: 

t 6mlX) 

MFm (X )  = P L U m  (x, y ) L  m dy. 
d o  

The dimension, Lm, is equal to the fin height, H, for the fin wall film and to the fin spacing, S, 
for the prime surface film. The velocity Um is equal to the spanwise mean U velocity for the fin 
or the prime surface, as appropriate. 

The equation governing energy transport in the liquid film was derived using the following 
simplifications: 

(1) The liquid flowing in the corner regions of the matrix is sufficiently well-mixed 
by film spreading that lateral conduction effects are negligible. 

(2) Axial conduction is small in comparison to transport across the film thickness. 
(3) The mean temperature of the prime surface film is approximately the same as 

that flowing along the fin walls. As such, the exchange of energy which arises 
through film spreading is small in comparison to the other energy transport 
processes. 

When these idealizations are combined with those presented above for the momentum equation, 
the energy equation for both the prime and secondary surfaces takes the following form: 

uc3T vOT c3 (~TOT~ [26] 
ax + a y - a y \  ayJ" 

For the fluids considered in the present analysis, the Prandtl number, Pr, is sufficiently high that 
turbulent transport of energy may be significant, even though turbulent transport of momentum 
was assumed negligible. Consequently, the diffusivity, ~r, in [26] represents the combined effects 
of molecular and turbulent energy transport: 

Pr EM 
0~ T : 0~ m + E H : 0~ m -'[- - -  - -  

Pr t v 

The turbulent diffusivity, EM, was evaluated using the thin-film diffusivity model proposed by 
Blanghetti & Schlunder (1978): 

f [ ' 
E___MV = --0.5 + 0.5 1 + 0.64y ÷2 1 -- exp -- ~ j _ ]  (y ~< 6 [27a1 

- ( '+)1 + 0.0161 Ka ~'3DoL34k* 1 [6 - y ÷ ]  (y>6'), [27b] 
v L " ° + 6 .  

where y+ = y x / ~ / v ,  Zw being the wall shear stress, and 6 + equals y+ evaluated at y = 6. In 
[27a, b], 6' is the location in the liquid film where the turbulent diffusivity relation for the lower 
part of the film, [27a], intersects that for the upper part of the film, [27b]. In [27b], 
Ka = p3g3(v~/g)2/cr3, Ref = G(1 - Xm)dh/].tL and z~ = "r/(pL - -  pG)(v[/g) t/3. For these calculations 
the turbulent Prandtl number, Prt, was assigned the value of 0.9. Note that for conditions in which 
the film is very thin, EM/V --'0 in [27a, b] and the expression for cot correctly indicates that turbulent 
energy transport effects are neglible, i.e. ~r ,~ ~m. 

The boundary conditions which must be satisfied by the energy equation for the prime and 
secondary surface films are summarized in table 4. Most of these boundary conditions assure 

T a b l e  4. B o u n d a r y  c o n d i t i o n s  f o r  t h e  l i qu id  f i lm  e n e r g y  

e q u a t i o n s  

L o c a t i o n  P r i m e  s u r f a c e  S e c o n d a r y  s u r f a c e  

y = O  T=Twr,  T =  Twv 
y = 6(x)  T = Ts. t T = T~t dT 
x =0 - -  =0 T= T~, 

0x 
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continuity of temperature and heat flux at the channel walls and the gas-liquid interface. The 
boundary condition along the inlet plane (x = 0) of the prime surface film assumes that the film 
is sufficiently well-mixed by the film transfer processes occurring at this location that streamwise 
diffusive transport of energy is negligible (recall the earlier discussion in connection with the 
momentum equation). 

The equations governing the velocity and temperature fields in the liquid film were non-dimen- 
sionalized, discretized and solved over a 60 (x) x 100(y) uniform rectangular grid using an implicit 
finite difference scheme. Pressure and shear stress information required to complete the prime and 
secondary surface film flow models was supplied by the vapor flow field calculations described in 
section 2. Since the variation in film thickness and velocity could not be specified a priori, vapor 
core and liquid film calculations were performed iteratively until the velocity fields in both phases 
no longer changed. 

Once the film velocity calculations had converged, the film energy equation [26] was discretized 
and solved in non-dimensional form over the same 60 x 100 grid used for the velocity calculations. 
Since the mean temperature of the fin wall could not be specified without knowledge of the 
mean fin wall heat transfer coefficient, temperature field calculations for the prime and secondary 
surface films were performed iteratively. Using an initial estimate of the prime surface temperature, 
the energy equation was solved to obtain the heat transfer coefficients for both the prime and 
secondary surfaces of the matrix. The definition of fin efficiency was then used to determine a 
more representative value of the mean fin wall temperature and the fin film energy equation was 
re-solved to obtain a more accurate value for the fin heat transfer coefficient. The prime surface 
temperature was then adjusted and energy equation calculations repeated until the computed total 
heat transfer rate agreed with that used in the experiments against which the results were being 
compared. 

Flow conditions and offset fin geometries considered during the computations were dictated 
by the availability of experimental data against which the model could be validated (table 5). 
Pressure drop calculations were performed for adiabatic two-phase flow using "surface 1" in 
table 5. Mandrusiak (1988) obtained two-phase pressure drop measurements for this surface 
using a procedure similar to that of Mandrusiak & Carey (1988). Computations were performed 
using R-113 as the test fluid for a system operating pressure of 101 kPa (see table 6 for 
properties). Calculations covered mass flux values from 50 to 150 kg/m2s and qualities ranging from 
40 to 90%. 

Two-phase heat transfer computations were performed for the geometry tested by Robertson & 
Lovegrove (1983) ("surface 2" in table 5). Computations were performed using R-11 as the working 
fluid for a system operating pressure of 550 kPa (see table 6 for properties). Calculations covered 
mass flux values ranging from 95 to 150 kg/m2s and qualities ranging from 45 to 90%. For these 
calculations, the fins were assumed isothermal and the flow was assumed to be stable annular flow 
for all qualities (i.e. dryout did not occur). In addition, the heating power levels considered by 
Robertson & Lovegrove (1983) were sufficiently low that the effects of evaporation on momentum 
transport could be neglected, especially over the very short length of the control volume under 
consideration (6.25 ram). 

Since the film model was derived for stable annular flow, computations for both test surfaces 
were only performed for conditions which corresponded to annular flow on the Hewitt & Roberts 
(1969) flow regime map. Attempts to extend the calculations into the churn flow regime were 
unsuccessful. The large amount of liquid in the channel for these conditions appeared to cause 
convergence problems with the liquid film model, preventing completion of the calculations. 

Table 5. Dimensions of  fin matrices used for the calcu- 
lations 

Dimension (mm) Surface 1 Surface 2 

t 0.13 0.20 
H 9.52 6.35 
L 3.18 3.18 
S 1.59 1.49 
d h 2.72 2.41 
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Table 6. Fluid properties of  the test fluids used in the 
calculations 

R-I13 R-I1 
Property (101 kPa) (550 kPa) 

PL (kg/m3) 1507 1329.7 
po(kg/m 3) 7.46 28.7 
CpL (J/kg K) 984 940 
hL~ (J/kg) 143,800 156,800 
,uL(Pa s) 516 x 10 -6 265 x 10 -6 
#o(Pa s) 10.77 × 10 -6 13.1 x 10 -6 

kL(W/mK) 0.0705 0.0720 
o(N/m) 0.018 0.012 

Pr L 7.20 3.45 

5. D I S C U S S I O N  O F  R E S U L T S  

5.1. Pressure field and interfacial shear stress 

The computed variation in pressure along the unit cell of figure 2(b) for surface 2 is shown in 
figures 8(a, b). In contrast with the variation seen in round tubes, both the integrated average [figure 
8(a)] and near-wall [figure 8(b)] pressure gradients become unfavorable over certain sections of the 
flow domain. The local changes in the integrated mean pressure are partly a consequence of the 
periodic changes in flow area (and, thus, flow velocity) at the ends of each row of fins. Along the 
fin walls, the strong local curvature of the streamlines (figure 9) increases the local static pressure 
gradient to levels even higher than those of the bulk flow. The results shown in figures (a, b) suggest 
that annular flow models which assume a favorable pressure gradient throughout the matrix may 
have limited accuracy. 
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Figure 8. Computed variation of static pressure along the unit cell of  figure 2(b): (a) integrated mean 
pressure; (b) local pressure along the fin walls. 



ANNULAR FLOW IN OFFSET FIN GEOMETRIES 1087 

I 

I 
I 
I 
I 
I 

I 

FLOW 

T 

Figure 9. Streamlines near fin walls for a typical set of flow conditions. 

During periodically fully developed adiabatic flow, the velocity profile (and, thus, the total 
momentum flux) across cross-channel planes two fin lengths apart is the same. Consequently, the 
two-phase pressure gradient in the fin matrix (dP/dx)Ftp can be found using a static force balance 
over an appropriate segment of the channel [figure 10(a)]: 

dPdx Ftp - - - - - -  LSH1 ( F  D + 2LSfwp + 2LHfwF). [28] 

The pressure gradient which results from gravity acting on the liquid film has not been included 
in [28]. [The small thickness (typically 0.05 mm) of the film makes its associated hydrostatic pressure 
gradient only a small fraction of the overall gradient given by [28] (<5%).] The mean wall 
shear stress terms, fwP and fwF on the prime and fin surfaces, respectively, were determined by 
integrating the computed local shear stress variation, rwF(X) or Zwp(X) (as appropriate) along the 
unit cell: 

fwV = /ZL ~ y  d x  ; fwp - -  / //'tL ~ dx, [29] 
w J0 \ c) w 

where UF and Up are the U velocity components over the fin and prime surfaces. The fin form 
drag term in [28], Fo, was approximated by the value determined from the two-dimensional 
numerical model of the vapor core. For this calculation, the two-dimensional analog to [28] was 
used to relate the computed pressure drop AP 2 to FD and mean interfacial shear stress, fj [figure 
lO(b)]: 

F D = - -  AP: S - 2Lgl. [30] 

Although the numerical model presented above was developed for annular two-phase flow, it 
can be used to study single-phase flow in offset fin geometries by setting the quality, xm, equal 
to one. Single-phase pressure drop information predicted for surface 1 (table 5) using the 
computer model is presented in figure ll .  Since experimental friction factor data are not 
available for this particular surface, the numerical predictions are compared to values computed 
using the standard correlation proposed by Webb & Joshi (1982). As this figure indicates, 
the numerical predictions are in excellent agreement with the standard correlations for both 
laminar and turbulent flow conditions. The slight deviations visible in this figure are likely a 
consequence of the approximate treatment of prime surface and form drag effects when deriving 
[28]. 
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Figure 10. Static force balances to determine pressure drops across the computational unit cell: (a) 
calculation of the overall pressure gradient; (b) calculation of the fin form drag. 

The frictional component of the two-phase pressure gradient ([28]) is often correlated in terms 
of the two-phase multiplier, ~b L, and the Martinelli parameter, X: 

- -  I/2 
= l a x  IVtp[ ' X =  

~L / d P  / ' 

-~x FL \ d x  IFG/ 

The subscripts FL and FG designate the frictional pressure gradients for the liquid phase and the 
vapor phase flowing alone, respectively. The computed variation of ~bL with 1/X is compared to 
experimental measurements obtained for surface 1 (table 5) in figure 12. The single-phase gradients 
needed to computed X and ~bL were determined using friction factors from figure 11. Values of q5 L 
predicted by the numerical model are, in general, in good agreement with experiment. The slight 
underprediction of tPL at high values of 1/X may indicate that the droplet entrainment model 
presented in section 3 is not completely accurate when relatively little liquid is present in the 
channel. The slight overprediction of tPL at low qualities may suggest that homogeneous flow theory 
does not accurately model the core flow when the entrained droplet flow rate is relatively high. 

The computed variation of shear stress along the interface of the fin wall film is shown in 
figure 13. The variation in interfacial shear stress is qualitatively similar to that for single-phase 
flow in these geometries (Patankar & Prakash 1981). The broken line in figure 13 represents the 
mean interfacial shear stress computed using the round tube correlation proposed by Wallis (1969). 
The results in this figure suggest that round tube correlations do not accurately represent either 
the magnitude or variation of interfacial shear stress in geometries of this type. 
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Figure 11. Friction factor variation computed with the numerical model for surface I (table 5). 

5.2. Two-phase heat transfer 

Values of the mean two-phase heat transfer coefficients computed for surface 2 (table 5) are 
compared to experimental data in figure 14. The predicted values of htp shown in figure 14 were 
obtained from the computed temperature fields in each film using the following relation to account 
for the effect of fin efficiency r/F: 

~PAP + ~iVqVAF [31] 
htp= Ae + ~lrAv 

Values of ~F and ~p were obtained by integrating the computed variation of hv(x) and hr,(x) along 
the unit cell, where for either surface, h was determined as h = -2L  (~ T/dy)y : o/(Tw - Tsar), 2L being 
the liquid thermal conductivity. The numerical predictions of the two-phase heat transfer coefficient 
appear to be in excellent agreement with the corresponding experimental measurements. 

The computed variation of the two-phase heat transfer coefficient along the prime and secondary 
surface walls is shown in figure 15(a,b). The variation of hr along the fin walls [figure 15(a)] is 
qualitatively similar to that for single-phase flow in offset fin geometries. The high local heat 
transfer coefficient near the leading edge of the fin is a result of the small thickness (and, 
consequently, low thermal resistance) of the film at this location. Near the trailing edge, the 
favorable pressure gradient and high interracial shear stress combine to accelerate the film towards 
the end of the fin, reducing its thickness and increasing the local heat transfer rate. 
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Figure 12. Variation of the two-phase multiplier computed for surface 1 with the numerical model. The 
circles correspond to measurements obtained by Mandrusiak (1988). 
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Figure 13. Computed variation of the interfacial shear stress along the film flowing along the fin walls. 
The broken line corresponds to the mean value computed using the round tube correlation (Wallis 1969). 

The streamwise variation of the local heat transfer coefficient along the prime surface [figure 
15(b)] is only slightly different from that along the fin wall. Over the first third of the computational 
unit cell [figure 2(b)], most of the liquid film travels along the prime surface of the matrix. 
Consequently, the local film Reynolds number is sufficiently high that the heat transfer rate is 
enhanced by convective transport of energy in the film. As more liquid spreads onto the fin walls, 
the effects of convective transport becomes smaller and the local heat transfer coefficient is reduced. 
Near the exit plane of the unit cell, the favorable pressure gradient accelerates the prime surface 
film, reducing its thickness and increasing the local value of hv slightly. 

The variation in hp shown in [figure 15(b)] suggests that, for certain conditions, convective energy 
transport significantly enhances the rate of heat transfer in the liquid film. In an attempt to quantify 
the importance of convective effects, paired calculations were performed in which the convective 
terms were alternately included and omitted from the energy equation, for otherwise identical flow 
conditions. The computed variation of the two-phase heat transfer coefficient along the fin wall 
is presented for both sets of calculations in figure 16(a). Near the leading and trailing edges of the 
fin, the film is thin enough that convective energy transport contributes relatively little to hF(X). 
In the central part of the fin, however, the film Reynolds number is high enough that convection 
enhances the local heat transfer coefficient by 20-30% over that by conduction alone. This exercise 
is repeated for the same flow rate but a higher quality in 16(b). For these conditions, the film 
Reynolds number is sufficiently low that convective energy transport is negligible in comparison 
to cross-film conduction all along the fin. 

I I ! ! I I I 
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Xm 

Figure 14. Mean heat transfer coefficients for surface 2 computed using the numerical mode] For 
convective boiling of  R-I 1 at 550 kPa. The symbols (I-], I I  ©,  O) denote data obtained by Robertson 
& Lovegrove (]983). The open symbols correspond to annular flow and the solid symbols designate points 

near the churn-annular transition. 
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Figure 15. Local variation of the two-phase heat transfer coefficient: (a) along the fin walls; (b) along the 
prime surface. 

These observations suggest that models of annular flow in offset fin matrices which neglect 
convective energy transport in the liquid film are best-suited to low mass flux or high quality 
conditions. At moderate qualities and flow rates, the convective terms should be retained in the 
energy equation to more accurately represent two-phase energy transport in these geometries. 

5.3. Effects of channel geometry 
Having validated the computational model against measured data, a series of computations were 

performed to systematically examine the effects of geometry on two-phase transport in offset fin 
matrices. The effects of channel geometry on the mean heat transfer coefficient are presented in 
figures 17(a-c). In performing these calculations, the indicated channel dimension was varied while 
the other two baseline dimensions were held fixed. All computed results shown in figures 17(a-c) 
and 18(a-c) are for vaporization of R-11 at a saturation pressure of 550 kPa. 

The mean heat transfer coefficient appears to increase with increasing fin height [figure 17(a)]. 
As the fin height increases, the mean thickness of the liquid film flowing along both the prime and 
secondary surfaces of the channel is reduced. As a result, the thermal resistance of the liquid film 
drops and the local heat transfer rate goes up. In addition, the enhancement in heat transfer 
coefficient near the leading edge of the fins contributes more to htp because the fins comprise a larger 
fraction of the total channel area. 

Increasing the length of the fins in a matrix appears to decrease the mean heat transfer coefficient 
[figure 17(b)]. This trend is consistent with that reported in the experimental study of two-phase 
heat transfer by Galezha et  al. (1976). As the fin length increases, flow in the channel passages 
becomes similar to that in a continuous-walled tube. As a result, the enhancement in two-phase 
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Figure 16. Relative importance of conductive and convective energy transport in the liquid film flowing 
along the fin walls: (a) moderate quality; (b) high quality. 
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heat transfer provided by the fins becomes less important and the overall performance of the surface 
is diminished. 

The results shown in figure 17(c) suggest that the mean heat transfer coefficient decreases as the 
fins are moved farther apart in the cross-stream direction. When the fin spacing is increased, the 
fraction of channel area comprised by fins is reduced. As a result, the local enhancement in heat 
transfer along the fin walls becomes less important in controlling the overall heat transfer coefficient 
for the matrix. In addition, the mean velocity and thickness of the film flowing along the prime 
surface are reduced, and the contribution of convective energy transport in the prime surface film 
becomes less important [recall figure 16(a)]. 

The effects of channel geometry variations on the two-phase pressure drop characteristics of 
offset fin matrices, as predicted by our model, are presented in figures 18(a--c). The results shown 
in these figures cover the same range of flow conditions and channel dimensions as presented in 
figures 17(a-c). To clearly indicate the effect of the geometry variation, the two-phase pressure 
gradient in each case has been normalized with that for the baseline geometry at the same flow 
conditions. (The subscript H = H0 designates the pressure gradient determined for the indicated 
baseline conditions.) While changes in both the fin length and the fin spacing appear to have 
significant effects on the pressure gradient, the effects of fin height are relatively small. More 
importantly, changes in fin height appear to affect the two-phase heat transfer coefficient and 
two-phase pressure gradient in opposite ways [cf. figures 17(a--c)]. As a result, increasing fin height 
simultaneously enhances the heat transfer performance of the surface while reducing its two-phase 
pressure drop. Changes in fin length and spacing appear to have competing effects on perform- 
ance- the  increase in heat transfer coefficient resulting from reducing the fin length or spacing is 
offset by an increased pressure drop penalty. 

The results of this parametric study suggest that optimal offset fin geometries for two-phase flow 
performance will tend to have taller fins. The selection of the optimal fin length and spacing appears 
to depend upon whether the improved heat transfer performance achieved with shorter, more 
closely-spaced fins warrants the increased two-phase pressure drop. Additional two-phase heat 
transfer measurements are required for other offset fin geometries to fully validate the theoretical 
predictions made here. 

6. CONCLUSIONS 

This paper describes a finite difference model of annular two-phase flow in vertical offset strip 
fin heat exchanger geometries. In this model, the velocity and pressure fields in the vapor core of 
the fin matrix were determined by numerically solving the turbulent momentum transport 
equations with a k-E closure scheme. Computed shear stress and pressure field information was 
then input to a second model of the liquid film to determine the local variation in the heat transfer 
rate and wall shear stress all along the matrix walls. Results obtained using this computational 
model suggests the following conclusions: 

(1) Although the model proposed here is the most detailed and most fundamental 
to date, it was necessary to treat droplet entrainment and liquid transfer from 
the prime surface semi-empirically. In spite of the idealizations in the model, 
numerical predictions of both heat transfer and pressure drop in offset fin 
geometries examined here were in excellent agreement with experimental data. 

(2) The model indicates that the local behavior of annular flow in offset fin surfaces 
is more complicated than that observed in round tubes operating under the same 
flow conditions. The complex shape of the flow domain causes the variation in 
interfacial shear stress along the fin film to be non-uniform. The local shear stress 
near the leading and trailing edges of the fin is typically 2-3 times higher than 
that near the middle of the fin. In addition, the magnitude of the mean stress 
was found to be as much as 50% lower than values computed using standard 
correlations for round tubes. The periodic changes in flow area and sharp turning 
of the flow as it passes around each fin also generate a region of strongly adverse 
pressure gradient along the first third of each fin in the matrix. The magnitude 
of the adverse pressure gradient was often 2-3 times the mean gradient across 
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(3) 

(4) 

the entire fin matrix. Even with the high local shear stress at this location, the 
pressure gradient was sometimes too large to allow continued downstream flow 
of the film along the fin walls, expecially for moderate quality conditions. For 
these conditions, a local value for the film thickness could not be obtained using 
the film model and the two-phase flow model would not converge. 
At low and moderate qualities, convective transport in the film was found to 
enhance the local heat transfer coefficient by 20-30% over that produced by 
molecular conduction effects alone. At high qualities, convective energy trans- 
port becomes unimportant and most of the heat transfer occurs through 
cross-film conduction. 
The computational model developed here shows promise as a tool for studying 
the effects of geometry on two-phase transport through offset fin matrices. 
Theoretical computations performed here suggest that the local heat transfer 
coefficient in these surfaces increases with increasing fin height and decreases with 
increasing fin length and cross-stream spacing. The two-phase pressure gradient 
was found to decrease with increasing fin height, length and cross-stream 
spacing. These results suggest that taller fins are preferred for optimal perform- 
ance. 
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APPENDIX 

Calculation of  Film Mass Flow Rate 

In section 3.1, the mass flow rate per unit length of channel periphery, Fx, was shown to satisfy 

OF.~ _ f12 d2Fx [13] 
0 X  (~Z 2 " 

The solution to [13] must satisfy the following boundary conditions. In figures 5(a, b), the planes 
z = 0 and z = +_ (S + H)/2 are planes of symmetry. As such, the circumferential mass flow rate, 
F., must be zero across these planes. This boundary condition can be expressed in terms of Fx as 
(see [12]): 

OFx :=0=0;  OFx [ =0.  [A.1] 
~z -~z . ~ : (s + m12 

Along the inlet plane (x = 0), all liquid flowing as a film is assumed to be uniformly distributed 
across the width of the prime surface ( -  S/2 < z < S/2), with none flowing along the fin walls. If 
the total film-flow rate is denoted by MVILM, then the boundary condition on Fx along the plane 
x = 0 takes the form { s 

0, z~< - ~ ,  

S S 
Fx(O, z) = MFILM/2S, ---~ < Z <-~, [A.2] 

S 
0, ~ z .  

The quantity MFILM is not to be confused with the total liquid flow rate in the channel, M L. M E 
includes liquid flowing both as a film along the walls (MFILM) and as droplets in the vapor core 
(MDRoP(CORE).O)  • 

Equations [13], [A.1] and [A.2] are in a form amenable for solution by separation of variables. 
When these calculations are performed, the following expression is obtained for Fx(x, y): 

MFIL____.MM ~ V f 2nnfl "~2 -] / 2nnz "~ 
z> :  +,- ,  + 

IJMF 16/6~J 
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with 

2MF~LM . { n z S  "~ 
= 

To compute the local film-flow rate along the prime and secondary surface walls, [A.3] is 
integrated across the appropriate segment of the channel perimeter. For the film flowing along the 
prime surface, 

Mp(vg,ME)(X) = f s'i2: Fx(x, y) dz. [A.4] 

Substitution of [A.3] into [A.4] yields 

Mp{pRIME)(X) S 1 -~ sm exp - x [A.5] 
MF,LM = H+ S n2SH -~ ~ ~ " n=l 

Similarly, the local film-flow rate due to film spreading along the fin walls is given by 

MFIN(PRIME~(X) = 2 Fx(x, z) dz. [A.61 
d s/2 

The additional factor of 2 appears in this equation because liquid spreads onto the fin walls from 
both the front and back walls of the channel. Introducing [A.3] yields 

MFIN(PRIME)(X ) g I i  2(S + H) 2 ~. --5 /~----:--~../ / / ~ - - - 7 - - ~ . . / / ? 1 .  21" mrS ~ F [ 2nnfl "~2 -]) 
MF,LM H + S ~ ~ 'SH  .=, n-s'n ka . . / exPL-k .~  . n / xA)"  [A.7] 

Calculation of the film spreading rate given by [A.5] and [A.7] requires the total film-flow rate 
prior to the onset of droplet deposition, MF~LM. If the rate of vaporization is assumed small in 
comparison to other liquid transfer processes, then the total liquid flow rate along the unit cell of 
figure 2(b) will be constant. Consequently, the total liquid film flow rate is related to the total liquid 
flow rate, ME, and the droplet flow rate prior to deposition, MDROP(CORE).O , by 

MFILM = M L -- MDROP(CORE).O. 

MDROP(CORE),O is given by [21]. 
The streamwise variation in film-flow rate given by [A.4] and [A.5] does not include the 

contribution from droplet deposition given by the equations in section 3.2. Since the prime surface 
is continuous in nature, droplet deposition along the prime surface film is assumed to be exactly 
balanced by entrainment (equilibrium flow). As such, the mass flow rate along the prime surface, 
MeR~ME(X), is controlled solely by the rate of film spreading and is represented by [A.4]: 

MpglME(X) = MpCPgIME)(X). 

Along the fin walls, however, the periodic interruption of droplet deposition by the staggered 
fins causes an imbalance in the relative rates of deposition and entrainment. Consequently, the fin 
wall film-flow rate given by [A.7] must be supplemented by the deposition rate given by [15]: 

MDROP(FIN ) ( x ) =  MDROP(CORE),O[I- exp(  K ° H  

so that 

MFI N (X) = MFIN(PRIME)(X) "{" MDROPcFIN~(X). 


